lio}

‘stuouradx? D1V oy uoddns o) pasn wasAs uonesouad 198re1 oy Ul JJeISITe USALP
121ndwod Jo Y31y oY [ORUOD 0 PUE UORNIVXI WIASAS [ONRUOD 0 PASN AMm STeuIw

-10} SNV [e29A9s skepdstp sorydesd o) 01 uonippe uj “suonisod 19[jonuod DLV Se pasn
M Yorym sKerdsIp umelp 101294 “10[03 om) pauoddns wixsAs sorydesd oy] 1anduiod
¥€-11 dad uonesodio) uswdinby rendiq e £q uoaup wasAs sowydesd puepsapng pue
sueaq ue pue ‘warsks Sunerodo swm [ear e Suruuns 19indwos ¢ ewdig xorX e Jo pasud
-1UOD SBM WISAS Sy ['SIea JO JAQUINU B JOAO YSYN 18 padofoasp s1daouod uonejuaw
-3ne ssuepm3 swoqure peseq punasd Juisn S[O01 UOIBWOINE [ONUOD SYJeN) Jre pIdueApe
ul Syuowradxa 190PUOd 01 PIsn Sem WIANSAS ST, “armaayare nduwioo uru e uo paseq
uone[nuis (QLy) [00u0D dYJes], Iy Swn-[ear e pado[aadp pey YSVN 9861 01 Joud

MIOM SNOjAeLd

"PaquIdSIP 3q [ii4 saniqedes uuoperd uon

-BISHIOM TUILIND YL "PAqUISIP 2 [1M amaayse oindwos rurw e uo adKiovoud e Sun
-dojaasp 1B 1dwione 155y 9y 1, "SV.LD 10 ‘wasL§ uonewoiny NOJV dL/1aud) odLio101d
e Jo Juswdopaaap oy 01 Burpes] YSVN Aq uop oM Snotaasd sassndsIp uonaes ayL

[8

punoibyoeg 0L
swasAs odL10101d nyosn,, ‘parnjeay [inj Surdojoasp Ul powIes] suossay oy uo siseydwd
IIm passnastp aq [wsks adLioord e Surdojoasp 105 suswannbai rerousd oy
“WAISAS 91 UT JRIOITE Yo 10] SisA[eur K10109fen paseq punotd Surpraoxd jo 3ded
-UOd Y} UO PIseq WIISAS [OBUOD Syjen Je ue Jo Juswdoaaap o 01 Burpesy sisoyuks
K10100fen pue 2ouepIng JWOQIIB UT YSYN AQ SUOP YIom snotadld Jo uoissnosip punosd
-Yoeq e yna suidoq vodar oy], ‘K30[0uy39) uoneIsIom 10[09 padueape uisn wasks
uonewoIne [oxuod oygen Jre ad£10104d € Jo wowdoraadp o szuewwns im Bodar siyy,

L £ GGV
a—

weysAs
uofjewoiny NOO VY L1OIUED
VSVYN #yj jo juewdoyjerep
oy} Burzjewnuns Liodes y
IPP3N '
woday reurq
[% uoneuwoIny judurdSeury
ey MO[{ [013U0)) dyjeL], IV

e N

-/ ‘,,&("'//.‘//

: IR
g{‘\.\\3“\ i

A

= = LT

e) [N
. 1 IR
AR

(“Atun
feuiy

©
®
~T
@]
T~
r’
~~
w
Y
S
«
o}
w
14
v
-+
w
ﬁ
(¢}
~
0
~
o
ry
Q [y
o 3
N 0
(¥, —
0 o
o ("
0

2661 ‘cZ 1equiedeq

HCAGE =D -VIWN

NOILVWOLINY IN3W3OVNVW MOI4 TOYWINOD

(»S696T-8D-VSVYN)

J1d4vdt Wlv

L0Z20L-S6N

Background

1.2

While the system provided the capability to run simulation experiments of reasonable
complexity the system was difficult to program and the computational resources (stor-
age and speed) were seriously taxed. A decision was made to upgrade the system to pro-
vide the means to expand the fidelity and flexibility of the experimental system to allow
the development of a research prototype with significantly greater storage capacity and
processing speed. Also required was the ability to expand the system to include more
display positions with better graphics capabilities for both the simulated controller posi-
tions as well as the target generation control positions.

Workstation Platform

During this period workstation technology had been exploding. Processing speed, disk
and RAM storage had increased in quantity and dropped in price significantly. The engi-
neering workstation was rapidly replacing the central computer as the system of choice
for many engineering applications. These workstations generally provided color graph-
ics capabilities that offered good performance and were relatively easy to program.
Other features becoming common were the Unix operating system and its suite of pro-
ductivity tools. High speed networks were generally incorporated making it easy to con-
nect many workstations together to exchange data and share resources.

NASA procured two Sun Microsystems workstations to explore migrating the ATC sim-
ulation into a distributed workstation environment. The workstation technology seemed
particularly well suited to the ATC automation tool development application. Rather
than having a limited number of several special purpose displays connected at a single
mainframe or mini computer, a system based on a distributed workstation environment
would allow any number of displays to be used with the functionality of each station
being determined by the software that was executed on it. The same system could be
used as an ATC control position, target generator control, system execution and moni-
toring. The same position could also be used for development greatly increasing the effi-
ciency of the development process. Distributing the software over several computers
greatly increased the computational performance available for each task. It was also
easy to expand the system scope by simply procuring additional workstations. Distribut-
ing the software also provided the framework in which to maintain functional divisions
amongst the processes thus keeping the software modules relatively clean, easy to
understand and maintain.

The workstation vendor was chosen for their good support software including color
graphics and windowing capability, their open systems philosophy, and their commit-
ment to remain a leader in cost/performance ratio. This decision has payed out nicely
over the years. We have gone from a 0.5 MIPS (million instruction per second) Sun 2 to
a 40 MIPS SPARCstation 2 in six years. Each upgrade in hardware has been accom-
plished without changing any of the code. The same applies to upgrades to the operating
system which have been accomplished with a minimum of development time. Sun has
been challenged on a number of fronts but continue to provide excellent capabilities and
continue to be a leader in the ongoing development of the open systems approach.

20f7

Alr Traffic Control Flow Management Automation Final Report

General requirements

Table 1 below gives an indication of the rapid progress made in the engineering work-
station computer category using a real world example of two systems procured by
NASA separated by a period of ten years.

TABLE 1.

20

You've Come A Long Way, Baby!

LSI11/23 - 1979 SPARCstation 1 - 1989

Cost (U.S. $) $20,000

DISK 2x10megabyte

(typical) (removable platters)

Sysem
Graphics none high fesolution colof

graphics

Performance 130,000 insiructions per 12 million instructions per

General requirements

21

After procuring the initial Sun workstations several requirements were identified for the
system port from the mini environment to the workstation environment. Many of the
requirements evolved along with the development of the system. While the original sys-
tem was intended only as a lab prototype it was decided to try and make the new system
as useful and full featured as possible.

Useful prototype.

In developing the initial layout of the CTAS system it very quickly become obvious that
is would be relatively easy to create a system that had a high degree of fidelity compared
with operational ATC platforms. For example, in order to create the video maps that are
used to draw the plan view map display it was decided to use data from operational ATC
facilities rather than hand creating a more limited set of graphical features sufficient for
a lab based system. This was done and in the long run saved significant amounts of time
when it became necessary to keep the displays up to date with the operational facilities.

This theme was found to be repeated over and over in the course of the development.
Any attempt to shortcut the path by a implementing a quick fix was found in the long
run to be counter productive. It was always easier to do it right the first time than to fix it
later. On the other hand it is important to recognize that the CTAS development is a
research system and as such is subject to constant revision. Attempts too complete in the
early stages could be counter productive as well as features may be found to be inade-
quate and need to be redone. Thus some kind of balance needs to be struck in what I will
term a “useful prototype™. A useful prototype is easiest to describe in context. In the
CTAS several different tools have been developed and are undergoing refinement by
continued simulation testing as well as field evaluations. The evaluation conducted dur-

Alr Tratfic Control Fiow Management Automation Final Report 30f7

General requirements

2.2

23

24

25

ing this process can only be carried out if the fidelity of the system being evaluated is
good enough that the subjects using the system are not led to false conclusions by the
limitations of the tool’s implementation. Furthermore to gain long term experience the
system 1o needs to be mature enough that it can be used in field sites by operational per-
sonnel. The system needs to be able to handle all the configurations and situations that
arise in the real world environment for extended periods of time. This real world experi-
ence is then fed back into the system design resulting in improvements which are then
further refined in the field. A too complicated project structure would prevent timely
incorporation of these improvements. A useful prototype is a system that is meant to
strike a balance between these conflicting requirements. The system is kept as simple as
possible while still incorporating the features necessary to make it work in the real
world environment. Several characteristics necessary to achieve this balance are
described below.

Remain Fiexible.

In any project of reasonable complexity there are going to be numerous issues that arise
that were not anticipated in the original design. Too rigid a design will make it difficult
or impossible to incorporate the changes necessary without significant delays. In many
ways the “top down” design model does not work in complex, computer based system
prototype development. There are too many unknowns at the outset. More emphasis
needs to be placed on building in the capability to adjust to the unexpected.

Create expansion potential.

There is an adage that you can never have too much closet space. This also applies to
computer system resources. Virtually every parameter will be found to stretch the limits
of capacity. In the early stages of the CTAS project the 0.5 Mips Sun 3s were thought to
process adequate performance for the current system requirements plus some expansion
potential. Today the 40 Mips SPARC 2s seem inadequate to the task and we anxiously
await the advent of the next generation of machines. The same phenomena applies to
RAM and disk storage. This feature is not got to go away. The best one can do is antici-
pate the need for ever greater resources and to choose the hardware and software plat-
forms that seem best able to evolve along with the requirements,

Benefit from new technologies.

In some ways this is an extension of the previous issue. Primarily this is accomplished
by using commercial off-the-shelf technology whenever possible. It is very difficult to
maintain a large research prototype that contains special purpose hardware and software
since any changes to the research system typically imply an equivalent change to the
special purpose products.

Be amenable to ad-hoc project management.

Typically in the early stages of the development of a research prototype there are many
ideas being discussed by individuals involved in the project which are difficult to cap-
ture in exact language or describe in unequivocal terms. By definition a research project
is one in which the issues being addressed are poorly understood. Meaningful solutions
develope gradually and may require reworking the software modules several times

40f7

Alr Traftic Control Flow Management Automation Final Report

General requirements

before practical solutions are found. Much of the knowledge gained during this period is
passed on through word of mount. Although the CTAS research group was fairly small
initially (four to five people) it was still fairly difficult to coordinate the activities of this
group too tightly without stifling the creative process necessary to further the research
goals. For this reason the computer system that embodies the research concepts needs to
be accessible to the researchers without requiring the researcher to wade through several
layers of software structure or management. For CTAS this meant creating simple cod-
ing standards that were easy to learn and apply. Use of source code control and auto-
mated program build were particularly important both in reducing the leaming curve as
well as enforcing a minimal discipline for new staff.

2.6 Provide maximum leverage of resources.

Advanced operating systems such as Sun’s implementation of Unix generally include
tools developed over time that can significantly reduce development time and enhance
productivity. Many times features that are included in the computer platform or avail-
able off-the-shelf are overlooked and the proverbial wheel is reinvented. In the case of
the Sun OS the tools provided include inter-process communication, networking, data
base management, source code control, program build control tools, symbolic debug-
ging, built in graphics including widget sets, event processing libraries, etc. The small
amount of time invested learning to use these resources pays dividends in the long run.

2.7 Bulld broad foundations from the start.

Even though the CTAS system described in this report is intended as a research proto-
type and not an operational system it is just as important to provide solid foundations on
which to build up and improve the system. Trying to take shortcuts or creating poorly
designed structures makes it difficult or impossible to improve those later in the project.
Figure 1 is meant to illustrate this point graphically. Many software initially make rapid

FIGURE 1. There is a right way and a wrong way.

Air Traffic Control Flow Management Automation Final Report 50f7

General requirements

2.8

progress but then get bogged down. I believe this is frequently because of a lack of
attention to the structural foundation of the software. It is frequently tempting to take
shortcuts to develop specific capabilities as fast as possible but this approach is sure to
cause problems in the future years of the project. Conversely any (perceived) extra
effort spent in the early stages of a project creating general structures that can be built
on in the later stages of the project usually pays out handsomely in increased productiv-
ity through the advanced stages.

An article in the Spring 1992 issue of SunProgrammer identified two characteristics of
good software. One is conciseness and the other is leverage. Conciseness is important
for several reasons. Concise code is generally easier to learn and modify. Usually code
written in a concise fashion is also efficient. It is possible to program in a cryptic fashion
which may result in concise code that is not easy to maintain but this is not generally
true. This is because writing concisely general requires more thought into the construc-
tion of the code and its flow. It is hard to write concise code at the first atiempt. Writing
concisely generally means going over the code several times continuously improving it,
weeding out inefficient constructs, seeing global patterns that allow a more general con-
struction, etc. In this way it is very similar to writing prose. It is accepted that in prose it
is necessary to review the text and revise it a number of times in order to improve it and
make it clearer. Why not apply the same criteria to software?

The article quotes Newton as saying, “If I have seen farther than others, it is because I
have stood on the shoulders of giants.” We have already discussed one aspect of lever-
age: using system resources to their fullest. Building broad structures also provides a
sort of built in leverage. If written correctly, many aspects of the software being devel-
oped should be reusable in many different ways. In some ways this is related to the con-
ciseness issue in that it is hard to write code that is easily reusable the first time through.
It general takes going over the code several times refining it at each pass. Patterns
become obvious in hindsight and the code can be rewritten in ways that allow the com-
mon elements to be combined and reused. This theme of revisiting code and making
constant improvements is a very important aspect of software development. Most use-
ful, long lived, widely distributed pieces of code have usually been developed in this
fashion. This concept is particularly applicable to research environments and leads to
the conclusion discussed in the next section.

Top Down Design, Not!

Very rarely is a system truly designed in a top down approach, particularly in systems
that are primarily of a research nature. Given a little thought this makes sense. Fre-
quently software systems start out trying to address poorly understood problems that are
felt to be amenable to some kind of computer based solution. An initial attempt is made
at providing tools to address the concerns. Generally this first attempt generates a lot of
additional ideas and discussion and provide insights that lead to further refinements of
the system as well as possibly the development of entirely new concepts which were not
obvious until a prototype or simulation of the system was available that could be inter-
acted with. At this stage the system architecture and tool functionality can be refine or
redone to incorporate the understanding gained from the first stage.

Whether the software needs to largely rewritten or can evolve to a more capable sysiem
largely depends on how the foundations were built in the earlier stages. It is generally

6of7

Alr Traffic Control Flow Managemant Automation Final Report

Conclusion

29

3.0

possible to anticipate overall needs of a system and to build in the expansion potential
needed for the inevitable future growth. Certain portions of the software can possibly be
identified at various stages whose functionality is understood well enough to separate
out from the body of software still undergoing development. This code is now a candi-
date for a “top down design”. But in essence the software has really already been
designed and what is really being accomplished is top down docwmentation. Because
the system has been developed and tested over a period of time the functionality
required has developed through interaction with users and will therefore lead to a robust
top down description. This description (design) then serves as a guide to the developers
in accomplishing the necessary changes when rewriting the relevant portion of the soft-
ware system.,

Recognize the programmers.

The preceding discussion should make clear the important role the programmers have in
the creation and evolution of a computer based software system. In the past when com-
puter systems were less accessible and resources more limited it was common to have a
staff dedicated to maintaining the computer and operating system and providing access
to its resources. With the advent of workstations and the tremendous capabilities being
placed on the desks of the engineer/developer has also come the added responsibilities
of maintaining and using these greater resources. In essence the greater capabilities have
led to being able to develope much more capable systems with fewer staff but the
demands placed on this staff are also much greater.

The areas that the developers need to be proficient include general system software,
graphics and windows, database, inter-process communication, real time operation, eic.
This is very different from the days in which software tended to be more of a straight
line, algorithmic approach with a programmer working directly for a researcher to
implement solutions to scientific computation problems. Current software systems tend
1o be very complex with the software architecture itself being part of the design require-
ments. Frequently the researcher and programmer tend to be the same person. At the
very least the researcher needs to familiar enough with software design issues to be able
to work with a programmer to come up with feasible solutions to specific problems that
take into account the complexities inherent in implementing, maintaining, and extend-
ing the software.

Conclusion

The development of operational prototype software has a unique set of requirements.
This report has summarized the lessons learned in developing the CTAS software. At
this juncture certain CTAS components have been deemed ready for operational devel-
opment. Work is commencing on a “hardened” CTAS that will be capable of being used
as an operational tool at ATC facilities.

Alr Traffic Control Flow Management Automation Final Report Tof?

